шјес
cbac

GCSE MARKING SCHEME

SUMMER 2016

GCSE MATHEMATICS LINKED PAIR METHODS UNIT 1 HIGHER 4363-02

INTRODUCTION

This marking scheme was used by WJEC for the 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

MFTHODS IN MATHEMATICS UNIT 2Ω IGHER TIER) SUMMER 2016

Methods in Mathematics Unit 1 Higher Tier	Mark	Comments
1. $\begin{array}{r} \mathrm{x}=40\left(^{\circ}\right) \\ \mathrm{y}=75\left(^{\circ}\right) \end{array}$ Sight of $180-75-40$ or 105-40 or equivalent $\mathrm{z}=65\left(^{\circ}\right)$	$\begin{gathered} \text { B1 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ 4 \\ \hline \end{gathered}$	FT 180 - 'their x' - 'their y' FT 180 - 'their x' - 'their y' correctly evaluated
2(a) 0.625 $0.2727 \ldots$ or 0.27 Recurring, Terminating, Recurring (b) $\frac{0.27}{5.4}$ or $\frac{0.9}{18}$ or $\frac{0.3}{6}$ or equivalent correct $1^{\text {st }}$ step $\frac{27}{540}$ or $\frac{9}{180}$ or $\frac{3}{60}$ or 0.05 1/20 (c) Method that ' $\ldots \times 12+56=200$, or $\begin{aligned} & \frac{\ldots \times 12+56}{100}=2 \\ & \quad \text { Number is } 12 \end{aligned}$		FT provided at least 1 of the decimals is correct, i.e. at least B1 previously awarded Allow for sight of 0.27 FT expressing as a fraction (with whole number numerator and denominator) provided equivalent level of difficulty, $2.7 / 5.4=27 / 54$ or $1 / 2$ is equivalent level of difficulty (M0, M1, A0) CAO OR 2×100, then 'their 200 ' -56 , then 'their 144 ' $\div 12$, or trial \& improvement with correct operations in the correct order CAO
3(a)(i) -8 (ii) -1 (iii) 1 (b)(i) $-8 \mathrm{~g}-29 \mathrm{~h}$ as an expression (ii) $\mathrm{x}+8$	$\begin{gathered} \text { B1 } \\ \text { B1 } \\ \text { B1 } \\ \text { B2 } \\ \text { B1 } \\ 6 \end{gathered}$	B1 for either -8 g or -29 h Mark final answer Accept $(x+8)^{1}$
4.(a) rhombus (b) kite	$\begin{gathered} \text { B1 } \\ \text { B1 } \\ 2 \\ \hline \end{gathered}$	Do not accept diamond
5.(a)(i) Method that produces prime factors with 2 correct primes before the $2^{\text {nd }}$ error Prime factors: $2,2,2,3,5,5$ $2^{3} \times 3 \times 5^{2}$ (ii) 2×3 or 6 (b) $440 \times 6 \div 11$ (£)240	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ \text { B1 } \\ \\ \text { M1 } \\ \text { A1 } \\ 6 \\ \hline \end{gathered}$	Ignore 1s included FT for equivalent level of difficulty FT for equivalent level of difficulty from (i) Allow with sight of the smaller share

Methods in Mathematics Unit 1 Higher Tier			Mark	Comments

Methods in Mathematics Unit 1 Higher Tier	Mark	Comments
$\text { 10(a) } 12$	B2	B1 for one appropriate step, e.g. cancelling $\sqrt{5} / \sqrt{ } 5$, or sight of $\sqrt{ } 9$ or $3, \operatorname{not}(\sqrt{ } 3)^{2}$ Do not accept $4 \sqrt{ } 45 / \sqrt{ } 5$ until simplified
(b) 10 (with no working or from correct working)	B3	B2 for 5 AND .../9 respectively B1 for 5 OR .../9 respectively For B2or B1 the $5, \ldots / 9$ may be in working, rather than expressed as a quotient
(c) 6×10^{-5}	B1	
(d) 3×10^{12}	B2	B1 for 3000000000000 or sight of $\ldots \times 10^{12}$
(e) $\frac{17 \pi}{4}$ or $4 \frac{1}{4} \pi$ or 4.25π	B2	Mark final answer B1 for $\frac{10 \pi}{4}+\frac{7 \pi}{4}$ or $2.5 \pi+1.75 \pi$ or equivalent
	10	
11. Strategy, e.g. 'square $+1+$ square' OR attempt to look at second difference	S1	OR break down, for a couple of patterns into: "'larger square' $+1+$ 'smaller square'" Maybe implied by $\ldots+\mathrm{n}^{2}$ or $(\mathrm{n}+1)^{2}+\ldots$ or for example ' $6^{2}+5^{2}+1$ ', OR for giving the correct number of squares in any pattern number >4 (strictly >4, not for pattern 4), not for Pattern number 5 written in the table for Pattern n , but allow if shown in a sequence
$(\mathrm{n}+1)^{2}+1+\ldots$ or $\ldots+1+\mathrm{n}^{2}$ or second difference 4	M1	Implies S1 also. Allow for $\mathrm{n}^{2}+1+\mathrm{n}^{2}$, or ' $\mathrm{n}^{2}+1+(\mathrm{n}-1)^{2}$ or similar
$(\mathrm{n}+1)^{2}+1+\mathrm{n}^{2}$ or $2 \mathrm{n}^{2}+2 \mathrm{n}+2$ or equivalent	A1 3	ISW $\mathrm{n}+1 \times \mathrm{n}+1+1+\mathrm{n}^{2}$ is awarded $\mathrm{S} 1, \mathrm{M} 1, \mathrm{~A} 0$
12. $\mathrm{y}=-\mathrm{x}^{2}$	B1	
$y=1 / x$	B1	
$y=x^{3}+1$	B1	
	3	
13. $12 \times 2=4 \times \mathrm{k}$	M1	
$\mathrm{k}=6(\mathrm{~cm})$	A1	Do not accept from incorrect working, e.g. $4+2$, is awarded M0, A0
	2	
14(a) Correct region shaded	B1	
(b) Correct region shaded	B1	
	2	

Methods in Mathematics Unit 1 Higher Tier	Mark	Comments
15. (a) 1 or equivalent (b) P (odd, even) $+\mathrm{P}($ even, odd $)$ $4 / 5 \times 1 / 4+1 / 5(\times 4 / 4)$ $=8 / 20(=4 / 10=2 / 5)$	B1 S1 M1 A1	Penalise incorrect cancelling of fractions-1 once OR listing 10 correct no reverse combinations, or 20 correct combinations, or sight of 20 outcomes (e.g. for 5×4) Listing all 20 combinations and selecting the correct 8 odd results, or 10 combinations and selection of 4 odd results Accept a correct answer from 10 possible combinations. Allow M1 A0 if FT from 1 slip in counting the combinations
16(a) $\begin{aligned} & 2 x^{2}+4 x-5 x-10+3-3 x+2 x-2 x^{2}(+1) \text { or } \\ & 2 x^{2}-x \quad-10+3-x-2 x^{2}(+1) \\ & -2 x-6= \\ & \end{aligned}$ (b) $\begin{array}{ll} (x+3)(x+4) \\ (x+3)(x-3) & \\ & \frac{x+4}{x-3} \end{array}$	A1 A1 B1 B1 B1 7	M1 for any 4 terms correct Must be convincing from sight of $-2 \mathrm{x}-6$ Allow expanding RHS provided M2, A1 previously awarded Mark final answer. FT for equivalent level of difficulty provided B1 previously awarded and cancelling required
17(a)(i) $3 x\left({ }^{\circ}\right)$ or equivalent (ii) $90\left({ }^{\circ}\right)-\mathrm{x}\left({ }^{\circ}\right)$ (iii) $2 \mathrm{x}\left({ }^{\circ}\right)$ (b) $180\left({ }^{\circ}\right)-2 \mathrm{x}\left({ }^{\circ}\right)$ or equivalent Reason, '(Opposite angles of a) cyclic quadrilateral (are supplementary)'	$\begin{gathered} \hline \text { B1 } \\ \text { B1 } \\ \text { B1 } \\ \\ \text { B1 } \\ \text { E1 } \\ \hline \\ \hline \end{gathered}$	Mark final answer Mark final answer Mark final answer Mark final answer Depends on the sight of SJF $=180\left({ }^{\circ}\right)-2 \mathrm{x}\left({ }^{\circ}\right)$ or equivalent
18(a) $4(2 x-3)-3(x+5)$ as a numerator 12 as a denominator $\frac{5 x-27}{12}$ (b) $(x+9)^{2}+19$	B1 B1 B1 B2 5	Not depending on a correct denominator Attempt common denominator 12 or multiple of 12 Mark final answer B1 for $\mathrm{a}=(+) 9, \mathrm{~B} 1$ for $\mathrm{b}=(+) 19$, only award B2 for $(x+9)^{2}+19$
19(a) $\mathrm{y}=1 / 3 \mathrm{x}-5$ or equivalent (b) Perpendicular gradient -3 Mid point $\frac{6+-2}{2}$ or $\frac{5+-5}{2}$ $\begin{equation*} y=-3 x+6 \tag{2,0} \end{equation*}$	M1 M1 A1 A1 6	Accept $\mathrm{y}=2 \mathrm{x} / 6+-5$ or equivalent Mark final answer B1 for $m=1 / 3$ or equivalent, B1 for $\mathrm{c}=-5$ Only award B2 if given as an equation FT-1/their m Sight of ($\ldots, 0$) is insufficient evidence for M1 Accept attempt to plot the 2 points with attempt to find the mid-point ISW. FT provided M1 and M1 both awarded

